X-Git-Url: https://code.wpia.club/?a=blobdiff_plain;f=lib%2Fopenssl%2FREADME;fp=lib%2Fopenssl%2FREADME;h=cb90c9f4028dc40cba7c10284104a0720d31c24e;hb=9ff1530871deeb0f7eaa35ca0db6630724045e4a;hp=0000000000000000000000000000000000000000;hpb=25b73076b01ae059da1a2e9a1677e00788ada620;p=cassiopeia.git diff --git a/lib/openssl/README b/lib/openssl/README new file mode 100644 index 0000000..cb90c9f --- /dev/null +++ b/lib/openssl/README @@ -0,0 +1,218 @@ + + OpenSSL 1.0.1j 15 Oct 2014 + + Copyright (c) 1998-2011 The OpenSSL Project + Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson + All rights reserved. + + DESCRIPTION + ----------- + + The OpenSSL Project is a collaborative effort to develop a robust, + commercial-grade, fully featured, and Open Source toolkit implementing the + Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) + protocols as well as a full-strength general purpose cryptography library. + The project is managed by a worldwide community of volunteers that use the + Internet to communicate, plan, and develop the OpenSSL toolkit and its + related documentation. + + OpenSSL is based on the excellent SSLeay library developed from Eric A. Young + and Tim J. Hudson. The OpenSSL toolkit is licensed under a dual-license (the + OpenSSL license plus the SSLeay license) situation, which basically means + that you are free to get and use it for commercial and non-commercial + purposes as long as you fulfill the conditions of both licenses. + + OVERVIEW + -------- + + The OpenSSL toolkit includes: + + libssl.a: + Implementation of SSLv2, SSLv3, TLSv1 and the required code to support + both SSLv2, SSLv3 and TLSv1 in the one server and client. + + libcrypto.a: + General encryption and X.509 v1/v3 stuff needed by SSL/TLS but not + actually logically part of it. It includes routines for the following: + + Ciphers + libdes - EAY's libdes DES encryption package which was floating + around the net for a few years, and was then relicensed by + him as part of SSLeay. It includes 15 'modes/variations' + of DES (1, 2 and 3 key versions of ecb, cbc, cfb and ofb; + pcbc and a more general form of cfb and ofb) including desx + in cbc mode, a fast crypt(3), and routines to read + passwords from the keyboard. + RC4 encryption, + RC2 encryption - 4 different modes, ecb, cbc, cfb and ofb. + Blowfish encryption - 4 different modes, ecb, cbc, cfb and ofb. + IDEA encryption - 4 different modes, ecb, cbc, cfb and ofb. + + Digests + MD5 and MD2 message digest algorithms, fast implementations, + SHA (SHA-0) and SHA-1 message digest algorithms, + MDC2 message digest. A DES based hash that is popular on smart cards. + + Public Key + RSA encryption/decryption/generation. + There is no limit on the number of bits. + DSA encryption/decryption/generation. + There is no limit on the number of bits. + Diffie-Hellman key-exchange/key generation. + There is no limit on the number of bits. + + X.509v3 certificates + X509 encoding/decoding into/from binary ASN1 and a PEM + based ASCII-binary encoding which supports encryption with a + private key. Program to generate RSA and DSA certificate + requests and to generate RSA and DSA certificates. + + Systems + The normal digital envelope routines and base64 encoding. Higher + level access to ciphers and digests by name. New ciphers can be + loaded at run time. The BIO io system which is a simple non-blocking + IO abstraction. Current methods supported are file descriptors, + sockets, socket accept, socket connect, memory buffer, buffering, SSL + client/server, file pointer, encryption, digest, non-blocking testing + and null. + + Data structures + A dynamically growing hashing system + A simple stack. + A Configuration loader that uses a format similar to MS .ini files. + + openssl: + A command line tool that can be used for: + Creation of RSA, DH and DSA key parameters + Creation of X.509 certificates, CSRs and CRLs + Calculation of Message Digests + Encryption and Decryption with Ciphers + SSL/TLS Client and Server Tests + Handling of S/MIME signed or encrypted mail + + + PATENTS + ------- + + Various companies hold various patents for various algorithms in various + locations around the world. _YOU_ are responsible for ensuring that your use + of any algorithms is legal by checking if there are any patents in your + country. The file contains some of the patents that we know about or are + rumored to exist. This is not a definitive list. + + RSA Security holds software patents on the RC5 algorithm. If you + intend to use this cipher, you must contact RSA Security for + licensing conditions. Their web page is http://www.rsasecurity.com/. + + RC4 is a trademark of RSA Security, so use of this label should perhaps + only be used with RSA Security's permission. + + The IDEA algorithm is patented by Ascom in Austria, France, Germany, Italy, + Japan, the Netherlands, Spain, Sweden, Switzerland, UK and the USA. They + should be contacted if that algorithm is to be used; their web page is + http://www.ascom.ch/. + + NTT and Mitsubishi have patents and pending patents on the Camellia + algorithm, but allow use at no charge without requiring an explicit + licensing agreement: http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html + + INSTALLATION + ------------ + + To install this package under a Unix derivative, read the INSTALL file. For + a Win32 platform, read the INSTALL.W32 file. For OpenVMS systems, read + INSTALL.VMS. + + Read the documentation in the doc/ directory. It is quite rough, but it + lists the functions; you will probably have to look at the code to work out + how to use them. Look at the example programs. + + PROBLEMS + -------- + + For some platforms, there are some known problems that may affect the user + or application author. We try to collect those in doc/PROBLEMS, with current + thoughts on how they should be solved in a future of OpenSSL. + + SUPPORT + ------- + + See the OpenSSL website www.openssl.org for details of how to obtain + commercial technical support. + + If you have any problems with OpenSSL then please take the following steps + first: + + - Download the current snapshot from ftp://ftp.openssl.org/snapshot/ + to see if the problem has already been addressed + - Remove ASM versions of libraries + - Remove compiler optimisation flags + + If you wish to report a bug then please include the following information in + any bug report: + + - On Unix systems: + Self-test report generated by 'make report' + - On other systems: + OpenSSL version: output of 'openssl version -a' + OS Name, Version, Hardware platform + Compiler Details (name, version) + - Application Details (name, version) + - Problem Description (steps that will reproduce the problem, if known) + - Stack Traceback (if the application dumps core) + + Report the bug to the OpenSSL project via the Request Tracker + (http://www.openssl.org/support/rt.html) by mail to: + + openssl-bugs@openssl.org + + Note that the request tracker should NOT be used for general assistance + or support queries. Just because something doesn't work the way you expect + does not mean it is necessarily a bug in OpenSSL. + + Note that mail to openssl-bugs@openssl.org is recorded in the publicly + readable request tracker database and is forwarded to a public + mailing list. Confidential mail may be sent to openssl-security@openssl.org + (PGP key available from the key servers). + + HOW TO CONTRIBUTE TO OpenSSL + ---------------------------- + + Development is coordinated on the openssl-dev mailing list (see + http://www.openssl.org for information on subscribing). If you + would like to submit a patch, send it to openssl-bugs@openssl.org with + the string "[PATCH]" in the subject. Please be sure to include a + textual explanation of what your patch does. + + If you are unsure as to whether a feature will be useful for the general + OpenSSL community please discuss it on the openssl-dev mailing list first. + Someone may be already working on the same thing or there may be a good + reason as to why that feature isn't implemented. + + Patches should be as up to date as possible, preferably relative to the + current Git or the last snapshot. They should follow the coding style of + OpenSSL and compile without warnings. Some of the core team developer targets + can be used for testing purposes, (debug-steve64, debug-geoff etc). OpenSSL + compiles on many varied platforms: try to ensure you only use portable + features. + + Note: For legal reasons, contributions from the US can be accepted only + if a TSU notification and a copy of the patch are sent to crypt@bis.doc.gov + (formerly BXA) with a copy to the ENC Encryption Request Coordinator; + please take some time to look at + http://www.bis.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html [sic] + and + http://w3.access.gpo.gov/bis/ear/pdf/740.pdf (EAR Section 740.13(e)) + for the details. If "your encryption source code is too large to serve as + an email attachment", they are glad to receive it by fax instead; hope you + have a cheap long-distance plan. + + Our preferred format for changes is "diff -u" output. You might + generate it like this: + + # cd openssl-work + # [your changes] + # ./Configure dist; make clean + # cd .. + # diff -ur openssl-orig openssl-work > mydiffs.patch +